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The relationship between the fluctuating velocity vector and the temperature fluctu-
ation has been examined using direct numerical simulation databases of a turbulent
channel flow with passive scalar transport using a constant time-averaged heat flux
at each wall for h+ = 180, 395, 640 and 1020 (where h is the channel half-width
with the superscript denoting normalization by wall variables) at Prandtl number
Pr = 0.71. The analogy between spectra corresponding to the kinetic energy and
scalar variance is reasonable in both inner and outer regions irrespective of whether
the spectra are plotted in terms of kx or kz, the wavenumbers in the streamwise and
spanwise directions respectively. Whereas all three velocity fluctuations contribute to
the energy spectrum when kx is used, the longitudinal velocity fluctuation is the major
contributor when kz is used. The quality of the analogy in the spectral domain is
confirmed by visualizations in physical space and reflects differences between spatial
organizations in the velocity and scalar fields. The similarity between the spectra
corresponding to the enstrophy and scalar dissipation rate is not as good as that
between the kinetic energy and scalar variance, emphasizing the prominence of the
scalar sheets as the centre of the channel is approached. The ratio R between the
characteristic time scales of the velocity and scalar fluctuations is approximately
constant over a major part of the channel and independent of h+, when the latter
is sufficiently large. This constancy, which is not observed in quantities such as the
turbulent Prandtl number, follows from the spectral similarities discussed in this paper
and has implications for turbulent heat transport models.

1. Introduction
The transport of the instantaneous temperature in a turbulent flow is primarily

controlled by the instantaneous velocity vector (e.g. Corrsin 1951; Batchelor 1959),
with molecular effects tending to smooth out inhomogeneities in the smallest scales.
While it is inappropriate to compare a scalar such as the temperature fluctuation
θ which is lamellar in nature (e.g. Corrsin 1953) with a solenoidal vector such as
the fluctuating velocity vector q, it is reasonable to seek a similarity between the
correlations q (t) ·q (t + τ ) and θ (t) θ (t + τ ), where the former quantity is the first
invariant of the velocity correlation tensor ui (t) uj (t + τ ) (t and τ denote the time
and a time delay, respectively; i or j =1, 2, 3 represent the streamwise, wall-normal

† Email address for correspondence: robert.antonia@newcastle.edu.au



242 R. A. Antonia, H. Abe and H. Kawamura

and spanwise directions, respectively; the overbar denotes the averaged value with
respect to space and time). For the more common case, when τ = 0, the transport
equations for the mean turbulent kinetic energy q2 (≡ u2 + v2 + w2) (u, v, w denote
the streamwise, wall-normal and spanwise velocity fluctuations, respectively, and are
sometimes used interchangeably with u1, u2, u3) and mean temperature variance θ2 are
similar in form, when Pr = 1, except for the presence of the pressure diffusion term
in the former equation (e.g. Fulachier & Antonia 1984). The similarity in the physical
domain has a correspondence in the spectral domain. Indeed, there is experimental
support for a spectral analogy between q and θ throughout most of the boundary
layer (Fulachier & Dumas 1976) and in other turbulent shear flows (Fulachier &
Antonia 1984). These imply that the same turbulence scales are major contributors
to both q2and θ2, a feature which may be exploitable in the context of developing
reliable models for the transport of the scalar field. In the physical domain, an analogy
has been established (Antonia et al. 1996) between the structure functions (δui)

2 and
(δθ )2; the transport equations for these two quantities provide some support for this
analogy at least within the framework of homogeneity and isotropy (Antonia et al.
1997) when the molecular Prandtl number, Pr, is 1. It should also be noted that this
spectral analogy breaks down (see chapter 7 of Chassaing et al. 2002) when the source
(production) terms for q2 and θ2 are not maintained, as is the case in grid turbulence.
In flows in which there is a constant source of velocity and scalar fluctuations due
to the presence of a wall, such as in a boundary layer or a channel flow, the spectral
analogy appears to be reasonably well supported by the available experimental and
numerical data, especially as the wall is approached. It is also supported in the absence
of a wall but in the presence of both mean velocity and temperature gradients, for
example in the case of a uniform shear flow with a constant mean temperature
gradient (e.g. Tavoularis & Corrsin 1981). The previous comments imply that for the
analogy to be valid, some forcing must be applied, although it is not yet clear if
the scalar needs to be forced separately from the velocity field, given that the scalar
should feel the influence of the fluctuating strain rate even for values of Pr close to
unity. In this context, with a single or multiple (for example via a heated mandoline)
localized heat sources at the entrance of a channel, one would expect the analogy to
be satisfied in the fully developed region of the channel once the temperature has
been sufficiently mixed by the large-scale motion. In the absence of external forcing,
as in decaying turbulence downstream of a grid or along the axes of jet and wake
flows, the analogy is not tenable. The experimental evidence gathered by Burattini &
Antonia (2005) indicates that in decaying-type flows, the second-order temperature
structure function (δθ )2 behaves as if it were ‘forced’, a behaviour consistent with that
noted by Warhaft (2000).

Direct numerical simulations (DNSs) provide more reliable information than
measurements, especially in the near-wall region (e.g. Moin & Mahesh 1998). The
DNS database of Kim & Moin (1989) was exploited by Antonia & Kim (1991)
who examined the spectral analogy between q and θ in the near-wall region of
a turbulent channel flow at a low Reynolds number (h+ = uτ/ν = 180, where uτ

is the friction velocity, ν the kinematic viscosity and h the channel half-width;
the superscript denotes normalization by wall variables), with three values of the
molecular Prandtl number (Pr = 0.1, 0.71 and 2). The analogy, presented only in
terms of kx , was quite satisfactory for Pr = 0.71, but the dependence on Pr of
the temperature spectrum becomes more pronounced with increasing distance from
the wall, thus implying an impairment of the analogy as the distance from the
wall is increased. Commonly, measured spectra are presented only in terms of kx ,
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after Taylor’s hypothesis is invoked for converting the frequency to a streamwise
wavenumber. The use of DNS data circumvents the need for Taylor’s hypothesis and
allows spectra to be examined in terms of both kx and kz, which respectively are
the wavenumbers in the streamwise and spanwise directions. While measurements
can provide useful information about the spatial organization of velocity and scalar
fields (indeed, evidence for the close similarity between velocity and thermal streaks
was first obtained experimentally by Iritani, Kasagi & Hirata 1985, while evidence
for the ‘cliff-ramp’ like spatial structure of temperature was first evidenced in the
atmospheric surface layer measurements by Taylor 1958), DNS databases allow
detailed simultaneous three-dimensional examinations of the instantaneous velocity
and scalar fields.

In the present study, we examine the analogy via both streamwise and spanwise
spectra with the use of the DNS databases for a fully developed channel flow with a
passive scalar for four values of the Reynolds number (h+ = 180, 395, 640 and 1020)
at Pr = 0.71 (Abe, Kawamura & Matsuo 2004b; Abe, Antonia & Kawamura 2008,
2009). There are two major objectives. The first is to clarify and quantify the extent of
the similarity between the q and θ spectra throughout the channel, both in physical
space and in the spectral domain, for several values of h+. We present spectra (in § 3)
both with respect to kx and kz in order to assess the relative contributions from the
three velocity fluctuations to the turbulent kinetic energy and with those from the
temperature fluctuations to the temperature variance in each case. Note that spectra
with respect to ky (the wavenumber in the wall-normal direction) are not obtainable
in the present flow due to the inhomogeneity in the y direction. Since the quality
of the analogy is likely to be linked to the degree of similarity between the spatial
organizations of the velocity and scalar fields, instantaneous q2 and θ2 contours are
viewed in the (x, y), (x, z) and (y, z) planes (x, y, z represent the streamwise, wall-
normal and spanwise directions, respectively.). The second objective is to explore the
possibility of a spectral analogy between the scales responsible for the dissipation
rates of q2 and θ2, thus extending the scope of the earlier work (Fulachier & Dumas
1976; Fulachier & Antonia 1984; Antonia & Kim 1991). One expects that turbulence
scales that are responsible for dissipating turbulent kinetic energy as heat would also
play a dominant role in scrambling or destroying the temperature fluctuations. An
analogy between the enstrophy and temperature dissipation rate spectra is suggested
by the similarity between the transport equations for the mean enstrophy and mean
scalar dissipation rate (Corrsin 1953; Abe et al. 2008, 2009). Intuitively, the close
similarity between the velocity and thermal streaks near the wall should lead to a close
relationship between at least some of the vorticity and scalar derivative components
due to the concentrations of the velocity and scalar derivatives in the regions between
low-speed and high-speed streaks (or alternately between low-temperature and high-
temperature streaks) and hence a high degree of correlation between the enstrophy (or
energy dissipation rate) and the scalar dissipation rate in the wall region. This should
in turn be reflected in a similarity between the corresponding spectra. It is evident
that in order to test this similarity, high-quality small-scale data are required. This
requirement is quite difficult, if not insurmountable, experimentally but achievable
with adequately resolved DNS databases. Accordingly, the likely analogy between
spectra associated with the energy and scalar dissipation rate scales is assessed in § 4.
In § 5, an attempt is made to quantify the quality of the spectral similarity between
q and θ and also that between the enstrophy (or energy dissipation rate) and the
scalar dissipation rate. This section also considers the implication of these two types
of similarity on the dissipation time-scale ratio.
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2. DNS details
The present databases have been obtained from DNSs in a turbulent channel flow

with passive scalar transport by Abe et al. (2004b, 2008, 2009). Four values of h+

(180, 395, 640 and 1020) are used. The molecular Prandtl number is 0.71. The flow is a
fully developed turbulent channel flow driven by a constant streamwise mean pressure
gradient. For the scalar (temperature) field, the conservation (energy) equation has
been time-integrated. The thermal boundary condition is the same as that used by
Kasagi, Tomita & Kuroda (1992). A constant time-averaged heat flux is applied at
each wall. This implies that the wall temperature, averaged over the z direction and
time, increases linearly in the x direction. Similarly, the bulk mean temperature also
increases linearly in the x direction. The wall temperature fluctuation is assumed to
be zero. In this context, the introduction of the temperature difference Θ defined as

T =
∂ 〈Tw〉

∂x
x − Θ (2.1)

(T and Tw are the local temperature and wall temperature, respectively; the angular
bracket represents integration over z and t) enables the use of the no-slip boundary
condition in the y direction. For the other (x and z) directions, periodic boundary
conditions are imposed. The governing equation for the scalar field can then be
written as

∂Θ+

∂t#
+ U+

j

∂Θ+

∂x
#
j

=
1

h+ · Pr

∂2Θ+

∂x
#2
j

+ U+
1

2∫ 2

0
Ū1dy#

(2.2)

(see also Kasagi et al. 1992; Kasagi & Ohtsubo 1993; Kawamura et al. 1998), where
the superscript # denotes normalization by the channel half-width (h), and the
capital letters represent instantaneous values. In view of the last term of (2.2), the
time-averaged heat flux remains constant across the channel. Note that the present
thermal boundary condition differs from the conditions used by Kim & Moin (1989).
For the first of these, an internal heat source was used so that the passive scalar was
created internally and removed at both walls. In the second, the source was turned
off and the scalar was introduced at the lower wall and removed at the upper wall.

A fractional step method is used with semi-implicit time advancement. The third-
order Runge–Kutta method (Spalart, Moser & Rogers 1991) is used for the viscous
terms in the y direction and the Crank–Nicolson method is used for the other terms.
A finite-difference method is adopted for the spatial discretization. A fourth-order
central scheme (Morinishi et al. 1998) is used in the x and z directions, while a second-
order central scheme is used in the y direction. For the initial velocity condition, an
instantaneous velocity field corresponding to a fully developed state was taken from
an earlier DNS of a turbulent channel flow. For the initial temperature condition,
the mean temperature distribution, as given by Kader’s (1981) formula, was assumed
(as in Kasagi & Ohtsubo 1993). The time integration was typically carried out to
several thousand times the viscous time scale (ν/u2

τ ) until the scalar field was deemed,
primarily on the basis of the total heat-flux distribution, to have reached a fully
developed state. Further details on the simulations are given in Abe, Kawamura
& Matsuo (2001) and Abe et al. (2004b, 2008, 2009), and the reader may refer to
these papers as well as Kawamura, Abe & Matsuo (2004) for information on basic
turbulence statistics such as mean and root mean square (r.m.s.) temperatures and
turbulent heat fluxes.

The computational domain size (Lx ×Ly ×Lz), number of grid points (Nx ×Ny ×Nz)
and spatial resolution (�x, �y, �z) are given in table 1 in which the superscript *
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h+ 180 395 640 1020

Lx × Ly × Lz 12.8h × 2h × 6.4h

L+
x × L+

y × L+
z 2304 × 360 × 1152 5056 × 790 × 2528 8192 × 1280 × 4096 13 056 × 2040 × 6528

Nx × Ny × Nz 768 × 128 × 384 1536 × 192 × 768 2048 × 256 × 1024 2048 × 448 × 1536

�x+, �y+, �z+ 3.00, 0.20 ∼ 5.90, 3.00 3.29, 0.15 ∼ 6.52, 3.29 4.00, 0.15 ∼ 8.02, 4.00 6.38, 0.15 ∼ 7.32, 4.25

�x∗
w , �y∗

w , �z∗
w 1.94, 0.13, 1.94 2.24, 0.10, 2.24 2.77, 0.11, 2.77 4.46, 0.11, 2.97

�x∗
c , �y∗

c , �z∗
c 0.82, 1.62, 0.82 0.74, 1.47, 0.74 0.82, 1.64, 0.82 1.16, 1.33, 0.77

Table 1. Domain size, grid points and spatial resolution of the DNS databases.

denotes normalization by Kolmogorov scales, and the subscripts w and c refer to
the wall and centreline, respectively. Since the spatial resolution at h+ = 180, 395
and 640 is finer than for h+ = 1020, a detailed study of the small scales was made
(Abe et al. 2008, 2009) at only the three smaller Reynolds numbers. In the present
context, it seemed appropriate to examine the spectral analogy between the turbulent
kinetic energy and the scalar variance at all four values of h+. However, only the
three smaller values of h+ were used when comparing spectra corresponding to the
dissipation rates of the turbulent energy and scalar variance. The present spatial
resolution is comparable with that of del Álamo et al. (2004) and Hoyas & Jiménez
(2008) in the y direction but is somewhat finer in the x and z directions. In particular,
the spatial resolution is good at the centreline, since �x∗ and �z∗ are smaller than
1 and �y∗ is smaller than about 1.6. At the wall, the poorest resolution is in the x

direction (table 1), but this is unlikely to have a major effect on streamwise spectra,
since the magnitudes of the velocity and scalar streamwise derivatives are quite small
near the wall (see Antonia, Kim & Browne 1991; Abe, Antonia & Kawamura 2006;
Abe et al. 2009). As will be evident in the following sections, there is no spurious
behaviour in the spectra at or near the most energetic scales. While Lx and Lz are

about half as large as for del Álamo et al. (2004) and Hoyas & Jiménez (2008), the
energy-containing scales are much smaller than Lx and Lz so that the effect of the
domain size on basic turbulence statistics is negligibly small (see Abe, Kawamura &
Choi 2004a). The previous considerations suggest that, overall, the spatial resolution
and domain size should be adequate for the present purpose, viz. for analysing the
analogy between spectra corresponding to the mean turbulent kinetic energy and
mean scalar variance as well as that between spectra corresponding to the dissipation
rates of these two quantities.

3. Analogy between the turbulent kinetic energy and scalar variance
One-dimensional streamwise and spanwise spectral densities are defined such that∫ ∞

0

Fβ (kx) dkx =

∫ ∞

0

Fβ (kz) dkz =1 , (3.1)

where β stands for either u, v, w (streamwise, wall-normal and spanwise velocity
fluctuations, respectively) or θ (temperature fluctuation). With the use of Fu, Fv , Fw ,
the spectrum of q is obtained as

Fq = (uu/qq) Fu + (vv/qq) Fv + (ww/qq) Fw (3.2)

Figure 1 shows the streamwise and spanwise spectral densities of q and θ for
h+ = 180, 395, 640 and 1020 at Pr = 0.71 in the inner region, where Fu is included for



246 R. A. Antonia, H. Abe and H. Kawamura

k x
F

β
 (

k x
)

k x
F

β
 (

k z
)

kx
+

kz
+

10–3 10–2 10–1

0.3

0.2

0.1

0

0

0

0

β = q
β = θ

β = u

β = q
β = θ

β = u

y+ = 10

y+ = 10

h+ = 1020

h+ = 1020

h+ = 640

h+ = 395

h+ = 180

h+ = 640

h+ = 395

h+ = 180

(a)

(b)

0

0

0

10–3 10–2 10–1

0

0.2

0.4

0.6

Figure 1. One-dimensional pre-multiplied spectral density of q, θ and u for h+ = 180, 395,
640 and 1020 at y+ = 10: (a) streamwise spectra; (b) spanwise spectra. Note the shift in origin
for the ordinate. The lowest zero refers to h+ = 180.

comparison. Note that both streamwise and spanwise spectral densities are multiplied
by the corresponding wavenumber and are plotted using log–linear (abscissa–ordinate)
scales so as to readily allow the identification of the scales which contribute most
to the turbulent energy or scalar variance. As for the turbulent boundary layer
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Figure 2. One-dimensional pre-multiplied spectral density of u, v, w and q for h+ = 1020 at
y+ = 10: (a) streamwise spectra; (b) spanwise spectra.
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Figure 3. Instantaneous (x, z) isocontours of q2, θ2 and u2 for h+ = 1020 at y+ = 10:

(a) q2/q2; (b) θ2/θ2; (c) u2/u2.

experiment of Fulachier & Dumas (1976), the present results indicate that Fq and Fθ

follow each other closely for nearly the whole wavenumber range, almost independent
of h+. In the near-wall region, this similarity is marginally better than that between
Fu and Fθ (see Fθ / Fu and Fθ / Fq at y+ = 10 in figure 16), even though the largest
contribution to Fq near the wall is from the streamwise velocity fluctuation (figure 1).
This implies that in the context of the spectral similarity, the contribution of Fw to
Fq cannot be dismissed (see figure 2), consistent with the low h+ results of Antonia
& Kim (1991).

The near-wall correspondence observed in the spectra is reflected in physical
space. Figure 3 shows isocontours of q2 and θ2 together with those of u2 (each
instantaneous field has been normalized by its own mean square value obtained from
the instantaneous (x, z) plane data) for h+ = 1020 at y+ = 10. Note that in figure 3,
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Figure 4. One-dimensional pre-multiplied spectral density of q , θ and u for h+ = 180, 395,
640 and 1020 at y/h = 0.4: (a) streamwise spectra; (b) spanwise spectra. Note the shift in
origin for the ordinate. The lowest zero refers to h+ = 180.

line contours are used instead of shaded contours to emphasize the large magnitudes.
The correspondence between q2 and θ2 is slightly better than that between u2 and θ2,
although the similarity between u2 and θ2 is high in the near-wall region (e.g. Iritani,
Kasagi & Hirata 1985; Antonia, Krishnamoorthy & Fulachier 1988; Kim & Moin
1989; Kasagi et al. 1992; Kasagi & Ohtsubo 1993).

In the outer region, as in the inner region, the spectral analogy between q and θ

generally holds for all wavenumbers (figure 4) with the exception of the spanwise
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Figure 5. One-dimensional pre-multiplied spectral density of u, v, w and q for h+ = 1020 at
y/h = 0.4: (a) streamwise spectra; (b) spanwise spectra.

spectra at low h+(180 and 395), which may be due to an insufficient separation
between large and small scales. However, the reason for the similarity between Fq and
Fθ cannot be explained simply, since the relative contributions of Fu, Fv , Fw to Fq

are different in the x and z directions (figure 5). For the streamwise spectra, all three
velocity fluctuations contribute almost equally to q at the most energetic scales so that
the spectral peaks in Fq reside at higher wavenumbers than those for Fu (figure 5a),
while for the spanwise spectra, u contributes mostly to q so that the spectral peaks
in Fq are almost the same as those in Fu (figure 5b). Hence, the spanwise spectral
similarity between q and θ is mainly attributed to that between u and θ , while the
streamwise similarity between q and θ reflects the sum of similarities between u and
θ, v and θ and w and θ . Inspection of the streamwise co-spectra of v and θ in the
outer region indicated that the most energetic wavenumbers are close to those of the
v and θ spectra (not shown here), implying a close relationship between v and θ in
this region.

A few previous studies focused on the most energetic peak wavenumbers (or
wavelengths) of the spectra in the outer region of this flow (e.g. Jiménez 1998; del
Álamo & Jiménez 2003; Abe et al. 2004a). For the spanwise spectra, del Álamo
& Jiménez (2003) reported the spanwise most energetic peak wavelength of the u

spectrum to be about 2h in the outer region. Abe et al. (2004a) suggested that the
peak wavelength is about 1.3h, independent of h+, and is associated with the spanwise
spacing of large-scale u structures. There is also evidence for the similarity between
the spanwise spacing of large-scale u and θ structures in this region as reported by
Kawamura et al. (2004). For the streamwise spectra, on the other hand, del Álamo
& Jiménez (2003) reported the streamwise most energetic peak wavelength of the
u spectrum to be 2h–5h in the outer region. Recently, Hutchins & Marusic (2007)
analysed the DNS database of del Álamo et al. (2004) and indicated the existence
of very long u structures, more than 25h in length, in the logarithmic region. They
also presented evidence on the very large-scale structures, using the DNS database
obtained with the largest computational domain (8πh in the x direction) used to
date. The present study has revealed that the most energetic wavelengths of θ

and q are much shorter than those of u and are of the order of h in the outer
region (figure 4), suggesting that the turbulent kinetic energy and scalar variance are
substantially composed of scales much smaller than those associated with the very
large-scale structures. This finding may suggest one reason why turbulence statistics
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Figure 6. Instantaneous (x, z) isocontours of q2, θ2 and u2 for h+ = 1020 at y/h = 0.4:

(a) q2/q2; (b) θ2/θ2; (c) u2/u2.

can be obtained adequately, if not accurately, without completely resolving the very
large-scale structures in recent DNSs of this flow.

The similarity between q2 and θ2 isocontours (figure 6) is not as good in the outer
region; the correlation coefficient (0.35) for figure 6 is less than half that (0.76) for

figure 3 (the correlation coefficient is defined such that ρφϕ ≡ (φ − φ̄)(ϕ − ϕ̄)/σφσϕ ,
where sigma denotes the r.m.s. value; here, the mean and r.m.s. values are calculated
from the instantaneous (x, z) plane data). However, while ρq2θ2 as well as ρu2θ2 and
ρw2θ2 are larger in the inner region (ρu2θ2 = 0.77, ρw2θ2 = 0.10) than in the outer region
(ρu2θ2 = 0.34, ρw2θ2 = 0.04), ρv2θ2 in the outer region (0.19) is larger than that in the inner
region (0.11). The increased correlation between θ2 and v2 can be readily confirmed in
instantaneous views when the focus is only on large magnitudes. Although contours
of θ2 and v2 are not shown here, we refer to the location x+ = z+ = 250 in
figure 6 which emphasizes that the similarity between large magnitudes of q2 and θ2

is superior to that between u2 and θ2, even though ρq2θ2 (0.35) and ρu2θ2 (0.34) are
approximately equal. Consequently, the spectral similarity reported here is consistent
with the information contained in the instantaneous contours, provided the eye
focuses only on the most energetic scales when viewing these contours. The present
observations in physical space suggest that θ is affected by v and w as well as u in the
outer region. The spanwise extent of the large-scale θ structures is thus bigger than
that of the large-scale u structures (figure 6), which is one notable difference between
large-scale u and θ structures in the outer region.

The similarity between large magnitudes of q2 and θ2 in the instantaneous (x, z)
plane views is also observed in instantaneous (x, y) and (y, z) plane views. One
example is given in figure 7, where isocontours of q2 and θ2 in the (x, y) plane for
h+ = 1020 are shown together with those of u2. Figure 7 displays another difference
between the u and θ large-scale structures in the outer region. The inclination of
the large-scale θ structures to the wall is greater than that of the large-scale u

structures (see also the coloured isocontours of u and θ in figure 8), consistent with



Analogy between velocity and scalar fields in a turbulent channel flow 251

1.0(a)

0.5

0 0.5 1.0 1.5 2.0 2.5 3.0

1.0(b)

0.5

0 0.5 1.0 1.5 2.0 2.5 3.0

1.0(c)

0.5

0 0.5 1.0 1.5

x/h

y/h

y/h

y/h

2.0 2.5 3.0

Figure 7. Instantaneous (x, y) isocontours of q2, θ2 and u2 for h+ = 1020: (a) q2/q2;

(b) θ2/θ2; (c) u2/u2.

the differences between the two-point correlations in the (x, y) plane for u and θ as
reported by Kawamura et al. (2002) (see also figure 9). In this context, the average
inclination of the large-scale u structures to the wall lies in the range 12◦–30◦ for
turbulent boundary layer and channel flows (e.g. Brown & Thomas 1977; Rajagopalan
& Antonia 1979; Robinson 1991; Krogstad & Antonia 1994; Christensen & Adrian
2001), whereas the inclination of the large-scale θ structures to the wall is in the range
26◦–52◦ for the laboratory and atmospheric surface layers (see Antonia et al. 1979
and the references therein). The inclination angles shown in figures 7–9 are consistent
with those in the references cited above.

There is a difference (figure 8) associated with the interfaces between positive and
negative values of large-scale θ and u structures (fronts or backs). Even though the
Prandtl number is moderate (0.71), the interfaces of θ are sharper than those of u,
which seems to be in conformity with the greater amount of energy observed in θ

than in u at high wavenumbers (figure 4). This behaviour is also consistent with
measurements in thermal boundary layers (Chen & Blackwelder 1978; Antonia et al.
1982; Subramanian et al. 1982). Further, at the interfaces, θ is more likely to be
less mixed than u, especially in the outer region. This may be associated with the
unmixedness of the scalar, as suggested by Guezennec, Stretch & Kim (1990) for a
turbulent channel flow with one wall heated and the other cooled, who suggested
that there may exist significant differences between the local transports of heat and
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Figure 8. Instantaneous (x, y) colour isocontours of θ and u for h+ = 1020: (a) θ+; (b) u+.
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Figure 9. Two-dimensional (x, y) two-point correlations of u and θ at h+ = 395 for the
reference y location of y/h ≈ 0.5: (a) θ ; (b) u. Contour levels are from 0.1 to 0.9 with the
increment of 0.1.

momentum due to the role played by the pressure fluctuations, even when Pr is of
the order of unity, and pointed out that the temperature, which seems to appear in
concentrated form around the eddies, retains a higher degree of unmixedness than
the velocity.

How does the similarity between q and θ vary with respect to y? Spectra (not shown
here) at several y locations in the wall region confirm that the similarity between
the q and θ spectra is quite good for either streamwise or spanwise wavenumbers.
With increasing distance from the wall, the similarity between the q and θ spectra is
not as good, implying that the large near-wall magnitudes of the mean velocity and
temperature gradients are important in the context of the closeness of the similarity
in that region. Nonetheless, in both the logarithmic and outer regions, the similarity
between the q and θ spectra is superior to that between the u and θ spectra. The
peak of the u spectrum is located at lower wavenumbers than that of the streamwise
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q and θ spectra, while the peak of the spanwise u spectrum is much sharper than
that of the spanwise q or θ spectra. These results suggest that, overall, the similarity
between the q and θ spectra is satisfactory throughout the channel, consistent with
the turbulent boundary layer results of Fulachier & Dumas (1976). The analogy may
be useful for developing more reliable turbulence models for the scalar field, such as
the kθ–χ (scalar variance–scalar dissipation rate) model (e.g. Nagano & Kim 1988;
Yoshizawa 1988, Nagano & Shimada 1996). The present finding is also important
from an experimental context, since the q spectra can be inferred from the θ spectra
without the need to measure the three velocity components.

4. Analogy between scales associated with the dissipation rates of the
turbulent kinetic energy and scalar variance

We next explore the possibility of a spectral analogy between scales associated with
the dissipation rates of q2 and θ2. For small-scale turbulence, an analogy between the

transport equations for the mean enstrophy ω2
i and θ,2i , which is sometimes referred

to as the mean scalar enstrophy, was first established by Corrsin (1953). Note that

θ,2i and the mean scalar dissipation rate χ = κ(θ,2i ) differ only through the factor
κ (thermal diffusivity). Recently, Abe et al. (2008, 2009) have presented support for
this analogy using DNS databases for the present flow. In this section, the analogy
between the enstrophy spectrum Fω and the scalar dissipation spectrum Fχ defined as

Fω = (ω1ω1/ωiωi) Fω1
+ (ω2ω2/ωiωi) Fω2

+ (ω3ω3/ωiωi) Fω3
, (4.1)

Fχ = (θ,1 θ,1/θ,i θ,i) Fθ,1 + (θ,2 θ,2/θ,i θ,i) Fθ,2 + (θ,3 θ,3/θ,i θ,i) Fθ,3 (4.2)

(ωi and θ,i ≡ ∂θ/∂xi denote the fluctuating vorticity and scalar derivative components
in the ith direction, respectively) is examined in both inner and outer regions. The
choice of ω2

i instead of ε (≡ ν(ui,j (ui,j + uj,i))) as the representative small-scale
quantity may be justified by the fact that for homogeneous turbulence the relationship

between the mean turbulent energy dissipation rate ε and the mean enstrophy, ω2
i ,

is given by

ε = ν ωiωi. (4.3)

Antonia et al. (1991) found that for h+ = 180 and 395, this equality is satisfied
approximately throughout the channel. The present data confirm this at all values of
h+. The largest departure (less than 5 %) from 1 of the ratio of ν ωiωi and the exact
dissipation rate (ε) occurs in the wall region (y+ = 5) (see also Abe et al. 2009). Since
the spectra (not shown here) corresponding to ω2

i are almost indistinguishable from
those which correspond to ε at all locations in the channel, the results in this section
should apply equally well for Fε as they do for Fω. Note that the use of (4.3) allows ε

to be readily determined experimentally from a three-component vorticity probe (e.g.
Antonia, Zhou & Zhu 1998).

Figure 10 displays the streamwise and spanwise spectral densities of ω2
i and χ for

h+ = 180, 395 and 640 at Pr =0.71 in the inner region. The correspondence between
Fω and Fχ is good for both streamwise and spanwise spectra, although the quality of
the collapse for Fq and Fθ is slightly better than that for Fω and Fχ (see figures 1 and
10). The similarity between Fω and Fχ mainly reflects that between Fω3

and Fθ,2 and
between Fω2

and Fθ,3 (figure 11), consistent with the high degrees of similarity between
ω2 (� u,3) and θ,3 (viz. spanwise interfaces of momentum and thermal streaks) and
between ω3 (� −u,2) and θ,2 (viz. edges of momentum and thermal streaks) in the
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Figure 10. One-dimensional pre-multiplied spectral density of ω and χ for h+ = 180, 395 and
640 at y+ = 10: (a) streamwise spectra; (b) spanwise spectra. Note the shift in origin for the
ordinate. The lowest zero refers to h+ = 180.

near-wall region (Abe et al. 2006, 2009). Hence, the dissimilarity between Fω and
Fχ in this region is attributed to that between Fω1

and Fθ,1 . Careful inspection of
figure 11 has shown that the magnitude of Fω1

is much larger than that of Fθ,1

for all wavenumbers, the magnitude of Fθ,1 being negligibly small. One may notice
another difference in the most energetic peak wavenumbers for Fωi

(figure 11a, c),
reflecting the different spatial size or spacing of ωi near the wall (e.g. Robinson 1991).
These differences lead to a similarity between Fω and Fχ of smaller quality than
that between Fq and Fθ . The visualizations in physical domain support the analogy
between Fω and Fχ . Figure 12 shows isocontours of ω2

i and χ together with those of
ε (each instantaneous field has been normalized by its own mean value) for h+ = 640
at y+ = 10. Again, the similarity between ω2

i and χ is satisfactory but is inferior to
that between q2 and θ2 (see figures 3 and 12). Note that the similarity between ε and
χ is nearly identical with that between ω2

i and χ , since ω2
i ≈ ε near the wall (the

correlation coefficients ρεχ and ρω2
i χ

are approximately equal; Abe et al. 2009).
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Figure 11. One-dimensional pre-multiplied spectral density of (a), (c) ωi and (b), (d ) θ,i for
h+ = 395 at y+ = 10: (a), (b) streamwise spectra; (c), (d) spanwise spectra.
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In the outer region, the similarity between Fω and Fχ is inferior to that near the wall
(see figures 10 and 13); the magnitude of Fχ at intermediate and high wavenumbers
is slightly larger than that of Fω (see figure 13), suggesting that the scalar dissipation
rate is more intermittent than the enstrophy in this region. The impairment in the
similarity between Fω and Fχ in the outer region is worth discussing. Assuming local
isotropy (e.g. Antonia & Kim 1994), each component of Fωi

and Fθ,i is expected to
contribute almost equally to Fω and Fχ , respectively, as the centreline is approached.
However, figure 14 reveals a clear difference between the relative contributions of Fωi

to Fω and those of Fθ,i to Fχ : the most energetic wavenumbers for two components of
Fωi

are nearly the same and larger than those for the remaining component, while the
most energetic wavenumbers for two components of Fθ,i are almost equal and smaller
than those for the remaining component. This difference may be associated with the
anisotropy in the outer region: tubular structures in the vorticity field (Blackburn,
Mansour & Cantwell 1996; Tanahashi et al. 2004) and sheet-like structures in the
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Figure 14. One-dimensional pre-multiplied spectral density of (a), (c) ωi and (b), (d ) θ,i for
h+ = 395 at y/h = 0.4: (a), (b) streamwise spectra; (c), (d) spanwise spectra.

scalar dissipation rate field (Abe et al. 2006, 2009). Visualizations in the physical
domain (figure 15) support this conjecture; the scalar dissipation rate exhibits more
pronounced sheet-like structures than the enstrophy in this region. This is consistent
with the finding that the vorticity and scalar gradient vectors align most preferentially
with the directions of the intermediate and compressive principal rates of strain,
respectively, in the outer region of this flow (Abe et al. 2008, 2009), the compressive
strain generating the sheet-like structures in χ . Given that in the outer region ε is, to
a large degree, only weakly correlated with ω2

i (see figure 15) and that the small-scale
motion has many characteristics in common with other turbulent flows (Blackburn
et al. 1996), one may wonder if ε exhibits sheet-like structures more clearly than
ω2

i . However, close inspection of the instantaneous realizations indicated that the
sheet-like structures are more pronounced in χ than in either ω2

i or ε (see also Abe
et al. 2009). The same trend was reported in homogeneous isotropic turbulence (e.g.
Ashurst et al. 1987; Ruetsch & Maxey 1992; Pumir 1994; see also Sreenivasan &
Antonia 1997). It seems reasonable to conclude that the impaired similarity between
Fω and Fχ in this region reflects the greater prominence of sheet-like structures for
the scalar dissipation rate than the enstrophy.

Overall, the quality of the analogy between the enstrophy and the scalar dissipation
rate is reasonable in both spectral and physical domains throughout the channel. This
result supports the similarity between the transport equations of ωiωi and θ,i θ,i when
Pr = 1 (e.g. Corrsin 1953; Abe et al. 2008, 2009). Like the analogy between Fq and
Fθ the analogy between Fω and Fχ is marginally better in the near-wall region than
in the outer region, suggesting that the presence of mean velocity and temperature
gradients plays an important role in underpinning the spectral similarity between ω2

i

and χ as well as that between q and θ .
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Figure 15. Instantaneous (x, z) isocontours of ω and χ for h+ = 640 at y/h = 0.4:
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5. Degree of similarity between Fq and Fθ and between Fω and Fχ

In this section, we examine in more detail the level of similarity between the spectral
densities corresponding to q2 and θ2 and those which correspond to ω2

i and χ .
Figure 16 shows distributions of the ratio Fθ/Fq at several y locations across the

channel, in terms of both kxh (figure 16a) and kzh (figure 16b). As might be inferred
from figures 1 and 4, the magnitude of Fθ/Fq is very close to unity for kxh < 20
(figure 16a), independent of y. For kzh < 20, the scatter in Fθ/Fq (figure 16b) is
slightly larger than that in figure 16(a) due to sharper spectral peaks in Fq than in
Fθ (figure 4b). Since the major contribution to Fq (kz) is from Fu (kz) (figure 5b), the
scatter in figure 16(b) reflects a slight difference between the spanwise organization
of the large-scale u and θ structures, the width of the latter structures tending to be
greater than that of the former, as discussed in § 3 (see figure 6). When kxh > 20, the
ratio increases, the rate of increase tending to be greater at larger values of y/h. This
behaviour, which is also apparent in figure 16(b), suggests that for sufficiently small
length scales, θ2 is almost invariably more energetic than q2. This is consistent with
the instantaneous visualizations of u and θ in figure 8 and underlines the unmixed
nature of the scalar (§ 3).

The ratio Fχ/Fω (figure 17) is roughly unity in the near-wall region for small
and intermediate wavenumbers, in conformity with the reasonable similarity between
Fω and Fχ (figure 10). As the distance from the wall increases, the magnitude of
Fχ/Fω decreases at small wavenumbers and increases at large wavenumbers. The
former trend suggests that ω2

i may be more clustered than χ in the outer region
(see figure 15) and contains more energy at large scales than χ . On the other hand,
the latter trend is related to the unmixedness of the scalar dissipation rate, which
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Figure 16. Distributions of the ratio of Fθ to Fq for h+ = 640 at several y locations:
(a) streamwise spectra; (b) spanwise spectra.

is associated with the sheet-like structures. The departure from unity of Fχ/Fω is
slightly smaller than that of Fθ/ Fq (see figures 16 and 17).

In view of the reasonable similarity between Fq and Fθ , on one hand, and that
between Fω and Fχ , on the other, it is reasonable to assess the implications of these
similarities on the distribution and magnitude of the time-scale ratio R,

R =
θ2

q2

ε

χ
, (5.1)

as well as the parameter B ,

B =
q2

1/2

θ2
1/2

dΘ/dy

dU/dy
. (5.2)

The possibility that R remains constant, at least in a particular flow and at sufficiently
large Reynolds numbers, would avoid the need to include a transport equation for
the mean scalar dissipation rate. In his review, Launder (1976) suggested that the
connection between the velocity and scalar time scales is ‘not strong enough for the
latter to serve generally as an approximation of the former’, thus implying that a
transport equation for χ is also needed when modelling turbulent heat transport.
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(a) streamwise spectra; (b) spanwise spectra.

The ratio R has been found to be reasonably constant, at least in near-equilibrium
regions of turbulent shear flows (e.g. Béguier, Dekeyser & Launder 1978) and about
0.5–0.6 in the outer region of a turbulent channel flow at Pr = 0.71 (Kawamura
et al. 2004). This constancy is also observed at other values of Pr, although the
magnitude of R increases with increasing Pr (Kasagi & Ohtsubo 1993; Kawamura
et al. 1998; Kawamura, Abe & Matsuo 1999; Kawamura et al. 2004). The near-wall
limiting value of R can be obtained analytically and is equal to Pr (e.g. Kasagi et al.
1992; Kawamura et al. 1998, 1999). This value is also consistent with the similarity
between q2 and θ2 at the wall. By applying de l’Hopital’s rule (noting that ε and χ

are non-zero at the wall)

χw

εw

R = lim
y→0

θ2

q2
= lim

y→0

(∂θ2/∂y)

(∂q2/∂y)

=
(∂θ/∂y)2

(∂u/∂y)2 + (∂w/∂y)2

= Pr
χw

εw

,

(5.3)
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where the subscript w denotes a wall value. This result also implies Fθ/Fq = Fχ/Fω

at the wall. This can be inferred from figures 16 and 17, Fθ/Fq and Fχ/Fω tending
to follow each other closely as the wall is approached. The parameter B may be
important in terms of estimating θ2 in models which assume that the turbulent
Prandtl number is constant. B has been found to be nearly constant (≈ 1.5) across
most of the boundary layer (Fulachier & Dumas 1976). Figure 18 shows distributions
of R and B across the channel. The turbulent Prandtl number Pr t , defined by

Prt =
uv

vθ

dΘ/dy

dU/dy
, (5.4)

is also included in the figure. Of the three quantities plotted, R exhibits the smallest
variation throughout the channel and, except for h+ = 180, is nearly independent
of h+. The parameter B is approximately constant (1.2–1.3) in the outer region,
except near the centreline. For h+ =1020, R and B vary by about 5% and 8 %,

respectively, over the range y/h= 0.2–0.9. Replacing u2
1/2

by q2
1/2

in (5.2) reduces
the difference between the inner and outer regions, but the percentage variation in
the outer region is almost unchanged. However, the difference in magnitude between
inner and outer regions is smaller for R than B; Pr t displays the largest variation,
tending to decrease slowly with increasing y/h. This variation can be satisfactorily
described by a parabolic relation (not shown here), similar to that suggested by Rotta
(1964). The DNS data of Bell & Ferziger (1993) in a turbulent boundary layer at small
momentum thickness Reynolds numbers also show that Pr t cannot be considered
constant outside the near-wall region, the magnitude of Pr t continuing to decrease
in the outer region with increasing y/δ (δ is the boundary layer thickness). From
a modelling viewpoint, figure 18 provides fairly strong support for setting R equal
to a constant in the region y/h > 0.2, suggesting a linear relationship between the

velocity (k/ε) and temperature (kθ/χ ) time scales, viz. kθ/χ = c (k/ε) (where k ≡ q2/2,

kθ ≡ θ2/2 and c is a constant). By differentiating this relationship, the transport
equation for χ can be approximated by

Dχ

Dt
=

χ

kθ

Dkθ

Dt
+

χ

ε

Dε

Dt
− χ

k

Dk

Dt
. (5.5)



262 R. A. Antonia, H. Abe and H. Kawamura

A currently used model equation for χ may be derived by substituting the model
equations for k, ε and kθ in (5.5) (see Johansson & Wikström 1999). The difference
between R and Pr t in the outer region may have implications when modelling the
turbulent eddy diffusivity in the two-equation model for the scalar field (e.g. Nagano
& Kim 1988; Yoshizawa 1988). In these models, Pr t is obtained as

Prt =
νt

at

=
cμ

cλ
R−p, (5.6)

where

νt = cμ

k2

ε
, at = cλ

k2

ε
Rp (5.7)

(at and νt denote the turbulent eddy viscosity and diffusivity, respectively, and cμ

and cλ represent model constants). Near-wall damping functions are omitted in (5.7),
since the focus is on the outer region. Nagano & Kim (1988) used p = 1/2, whereas
Yoshizawa (1988) used p = 2. The inclusion of R in the model implies using a mixture
of velocity and scalar time scales. Unlike R, Pr t varies in the outer region (figure 18);
this means that (5.6) cannot be correct and needs to be revised. The two-equation
heat transfer model of Nagano & Shimada (1996), which incorporates new velocity
and time scales to represent various sizes of eddies in the velocity and thermal fields,
shows promise, since the predicted Pr t is in reasonable agreement with that obtained
from the DNS data of Kim & Moin (1989).

In chapter 7 of Chassaing et al. (2002), (3.2) was rewritten as

q,21 = u2
1,1 + u2

2,1 + u2
3,1. (5.8)

It was argued that, using local isotropy, ε and χ can be approximated by

εisoq
= 3νq,21, (5.9)

χiso = 3κθ,21. (5.10)

With the use of (5.9) and (5.10), (5.1) may be rewritten as

Risoq
= Pr

θ2

q2

q,21

θ,21

, (5.11)

and hence

Risoq
= Pr

∫ ∞
0

k2
xFq (kx) dkx∫ ∞

0
k2

xFθ (kx) dkx

. (5.12)

If the spectral analogy were perfect, viz. Fq (kx) = Fθ (kx) (or presumably Fq (kz) =Fθ

(kz)), then Risoq
= Pr. Local isotropy is a reasonable approximation over a significant

portion of the outer layer. However, in this region Fq (kx) is smaller than Fθ (kx)
especially at sufficiently large values of kx (figure 16). As a consequence, the inequality

Risoq
<P r (5.13)

holds in the outer region and is consistent with the magnitude of the time-scale ratio
in this region (figure 18).

It is difficult to estimate R accurately from experimental data, since estimates of ε

and χ are almost invariably incomplete and often unreliable. In this context, it seems
appropriate to test the assumptions of local isotropy as well as local axisymmetry
(Batchelor 1946; Chandrasekhar 1950; George & Hussein 1991), since they have been
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Figure 19. Distributions of the ratios εiso/ε, χiso/χ, ε1/ε, ε2/ε, χ1/χ, χ2/χ .

used to simplify ε and χ . Their locally isotropic forms are given by (5.9) and (5.10)
as well as the well-known expression

εisou
= 15νu2

1,1. (5.14)

The locally axisymmetric relations (with x1 as the preferred axis) are

ε1 = ν

(
5

3
u2

1,1 + 2u2
1,3 + 2u2

2,1 +
8

3
u2

2,3

)
, (5.15)

ε2 = ν
(
−u2

1,1 + 2u2
1,2 + 2u2

2,1 + 8u2
2,2

)
, (5.16)

χ 1 = κ
(
θ,21 + 2θ,23

)
, (5.17)

χ 2 = κ
(
θ,21 + 2θ,22

)
. (5.18)

Expressions (5.15) and (5.16) were first written by George & Hussein (1991).
Comparative checks of local isotropy and local axisymmetry are provided in figure 19
through the distributions of εisoq

/ε, εisou
/ε, χiso/χ , ε1/ε, ε2/ε, χ1/χ , χ2/χ . The locally

axisymmetric expressions of ε2/ε and χ2/χ are close to unity throughout the channel,
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Figure 20. Distributions of R, as obtained from relations (5.11), (5.19) and (5.20). In each
case, R is divided by its ‘correct’ value, given by the relation (5.1).

consistent with the finding by Antonia et al. (1991) that local axisymmetry is more
appropriate than local isotropy in the near-wall region of this flow. However, εisou

/ε

and χiso/χ are nearly unity for y/h > 0.2, in support of local isotropy in this region
of the flow. The departure from unity of εisoq

/ε is larger than that of εisou
/ε except

near the centreline, suggesting that, within the framework of local isotropy, εisou
is

more adequate than εisoq
.

We now turn our attention to assessing the locally isotropic and axisymmetric
forms for R. The locally isotropic form of R is given by (5.11) as well as by

Risou
= Pr

θ2

q2

5u2
1,1

θ,21

. (5.19)

The locally axisymmetric expressions for R are

R1 =
θ2

q2

ε1

χ 1

, R2 =
θ2

q2

ε2

χ2

. (5.20)

Distributions of the isotropic ((5.11) and (5.19) and axisymmetric (5.20) forms of R

divided by R (5.1) are given in figure 20. As inferred from figure 19, the assumption of
local axisymmetry (5.20) is superior to assuming local isotropy and should therefore
provide a more reliable means of estimating R than (5.19) almost throughout the
channel. Local isotropy remains a reasonable approximation in the outer region
(y/h > 0.2), thus allowing experimenters to use (5.19), which is more easily determined
experimentally than (5.20), in this part of the flow.

6. Conclusions
The relationship between the fluctuating velocity vector, q, and the temperature

fluctuation, θ , has been examined using DNS databases of a turbulent channel
flow with a passive scalar for a constant heat-flux boundary condition (Abe et al.
2004b, 2008, 2009) at Pr =0.71 and four values of h+(180, 395, 640 and 1020). The
possibility of a spectral analogy between scales associated with the dissipation rates
for the velocity and scalar fields has also been explored. The following conclusions
can be drawn:
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(i) The spectral analogy between q and θ is reasonable throughout the channel,
consistent with the earlier boundary layer results of Fulachier & Dumas (1976).
Except perhaps at the two lower Reynolds numbers, this similarity is not affected
significantly by h+ except for the spanwise spectral analogy at h+ = 180 and 395.
In the inner region, it is u which is the dominant contributor to the q spectrum
irrespective of whether the spectra are viewed in terms of kx or kz. In the outer region,
the streamwise similarity between q and θ reflects the sum of the similarities between
u and θ, v and θ and also w and θ , while the spanwise spectral similarity between q
and θ reflects mainly the similarity between u and θ .

(ii) The instantaneous isocontours of q2 and θ2 in the (x, y), (x, z) and (y, z) planes
are consistent with the spectral similarity, although, in the outer region, the similarity
in physical space is, arguably, not as good as the spectral similarity. In the latter
region, the similarity between q2 and θ2 in physical space is prominent mainly for
large magnitudes of these two quantities. Further, differences between the large-scale
structures of u and θ are observed in the outer region (figures 6 and 8). The spanwise
extent of the large-scale θ structures is bigger than that of the large-scale u structures.
The inclination of the large-scale θ structures to the wall is much steeper than that
of the large-scale u structures. The interface between positive and negative values of
θ is sharper than that between positive and negative values of u, emphasizing the
unmixed nature of the scalar.

(iii) The analogy between Fω and Fχ is good in the inner region although of slightly
poorer quality than that between the spectra of ω2 and θ,3 or between those of ω3

and θ,2. The good agreement for the latter two cases is closely related to the almost
excellent spatial coincidence between velocity and thermal streaks (Abe et al. 2006,
2009). When plotted against kz, the comparison between Fω and Fχ is generally poorer
than that between Fq and Fθ . When plotted against kx , the agreement between Fω and
Fχ is at least as good, if not better, than that between Fq and Fθ . Overall, the spectral
analogy, either between Fq and Fθ or between Fω and Fχ , tends to deteriorate as
the centreline of the channel is approached when the magnitude of the wavenumber
(either kx or kz) increases. This trend is most likely associated with the reduced level
of forcing of the velocity and temperature fields, i.e. the reduction in the magnitudes
of the mean velocity and temperature gradients in this region. For scales comparable
to the Kolmogorov length scale, the magnitude of Fθ is larger than that of Fq .
Similarly, the magnitude of Fχ is larger than that of Fω. This implies that the lack of
mixedness of the scalar is manifested by the existence of the scalar sheets and ensures
that the spectral similarity breaks down at large wavenumbers.

(iv) As a result of the reasonable similarity, almost right across the channel, between
Fq and Fθ on one hand and between Fω and Fχ on the other, R varies much less
with respect to y than either the parameter B or the turbulent Prandtl number, Pr t .
The latter tends to decrease slowly with increasing y/h, whereas R is approximately
constant for y/h > 0.1 and is less affected by low-Reynolds-number effects than
Prt . From a modelling viewpoint, the assumption Pr t = constant would not be as
accurate as assuming that R is constant. The constancy of R appears robust, since it
is underpinned by the similarity – well documented in this paper – in both physical
space and the spectral domain. It should be noted however that this constancy may
not apply when Pr is much larger or much smaller than 1, since it is unlikely that the
analogy will apply for large and small values of the molecular Prandtl number. The
ratio R has been shown to equal Pr at the wall. The similarity between q2 and θ2

(see (5.3)) is consistent with this result. Using (5.12) and the ratios Fθ/Fq and Fχ/Fω

the magnitude of R has been shown to satisfy the inequality R < Pr in the outer region
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of this flow. This inequality most likely reflects the unmixedness of the scalar. The
assumptions of local isotropy and local axisymmetry have been tested in the context
of estimating R experimentally. Overall, there is little doubt that local axisymmetry is
superior to local isotropy over a significant portion of the channel. Nonetheless, local
isotropy (5.19) is a reasonable approximation in the outer region and should therefore
continue to provide a useful and simple way of estimating R from only measurements
of streamwise derivatives of velocity and scalar fluctuations in this region.
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